

ION Advanced Solvent CO₂ Capture Pilot Project

DE-FE0013303 NETL 2017 CO_2 Capture Technology Conference August 21, 2017

Erik Meuleman, PhD – Chief Technology Officer, ION Engineering

Outline

- ION Project Overview
- Results from ION Campaign at TCM (12 MWe)
- Further Conclusions

ION Advanced Solvent CO₂ Capture Pilot Project Project #: DE-FE0013303

• Project Timeline: Oct 2013 – Dec 2017

- Budget Period 1: Design of 1 MWe Pilot
- Budget Period 2: 0.5 MWe Test Campaign at National Carbon Capture Center (NCCC)
- Budget Period 3: 12 MWe Test Campaign at Technology Centre Mongstad (TCM)

\$25.2M Total Project Funding

- \$16.4M DOE-NETL
- \$ 9.2M ION and Partners (35% cost share)
- Overall Project Objective
 - Progress towards DOE's goal for second generation solvents of 90% capture rate with 95% CO₂ purity at a cost of less than \$40/tonne CO₂ captured by 2025

Project Participants & Roles NATIONAL NERGY TECHNOLOGY LABORATORY SINTEF THE UNIVERSITY OF ALABAMA Funding **Solvent Lifetime** Technology **Studies Process Simulation &** Optimized Gas Treating. Inc. ION Design TECHNOLOGY CENTRE MONGSTAD Host Sites ENGINEERING NATIONAL CARBON CAPTURE CENTER 3rd Party ELECTRIC POWER epe RESEARCH INSTITUTE Verification Utility **Economic** Partner Analysis Nebraska Public Power District Always there when you need us Sargent & Lundy TRIMERIC CORPORATION

Budget Period 3 – Task Overview

October 1, 2015 – December 31, 2017

Task #	Task Description	Key Objectives	Progress
1	Project Management	 Coordinate and plan project activities Maintain Budget, Schedule, Task Reviews, and Costs On-Boarding of Personnel 	 Regular meetings with project team, TCM, and DOE
11	TCM Host Site Preparation	 Modifications necessary to TCM ION Solvent Procurement & Delivery 	Completed
12	TCM Operations Preparation & Shakedown	 Develop Procedures for Operations Test Plan development and updates throughout campaign Pilot System Commissioning & Shakedown Testing 	Completed
13	TCM Solvent Testing	Solvent testing at TCM	Completed
14	TCM Data Acquisition, Storage & Analysis	Installation of Data Acquisition SystemsData Acquisition & Analysis	 In Progress – analyzing data from TCM and process model validation
15	TCM Final Systems Analysis	Final Report to DOE2017 Techno-Economic Analysis	TEA & Final Report are on-going

Budget Period 3 Project Schedule

October 1, 2015 – December 31, 2017

ION Engineering CO ₂ Capture Slipstream Project Schedule		Budget Period 3																										
		2015			2016 2017																							
		Q4		Q1		Q2		Q3		Q4		Q1		_	Q2			Q3			Q4							
		0	Ν	D	J	F	Μ	Α	Μ	J	J	Α	S	0	Ν	D	J	F	Μ	Α	Μ	J	J	Α	S	0	Ν	D
Task	Description																											
1	Project Management																											
	Budget Period 3																											
11	TCM Host Site Preparation																											
12	TCM Ops Preparation & Shakedown																											
13	TCM Solvent Testing																											
14	TCM Data Acquisition, Storage & Analysis																											
15	TCM Final Systems Analysis																											

ION'S CAMPAIGN AT CO₂ TECHNOLOGY CENTRE MONGSTAD (TCM)

TCM Amine Capture Plant

• Located in Mongstad, Norway

- 41 miles (60 km) Northwest of Bergen
- Ownership of TCM
 - Gassnova (75%), Statoil (20%),
 Shell (2.5%), Sasol (2.5%)
- 12 MWe Slipstream Amine Capture Facility
 - Natural Gas-fired Combined Cycle Flue Gas from Combined Heat & Power Plant (CHP)
 - Residue Fluid Catalytic Cracker (RFCC) Gas available from adjacent refinery

Campaign Overview in Numbers

- 150 test settings capturing over 14,000 tCO₂ in >2,750 hours
- >200 liquid samples
- >3,000 hours of ION personnel on-site at TCM
- >135 meetings between TCM and ION
- >500,000,000 data entries were collected and managed

Technical Objectives

- Determine stable, optimal operation of ION's solvent at TCM
- Validate ION process simulation model (ProTreat[®]) at 12 MWe scale
- Determine potential for CAPEX savings
 - Materials, packing height, emission mitigation
- Determine process emission profile
- Determine solvent loss rate
- Test and evaluate MLA analytical technology

Campaign Overview

- Flue Gas Types
 - Combined Heat & Power (CHP):
 Natural Gas Combined Cycle Flue
 Gas
 - 4% CO₂
 - CHP + CO₂ Recycle
 - 6 13% CO₂
 - Residue Fluid Catalytic Cracker (RFCC): Refinery Flue Gas
 - 12 15% CO₂
 - Analogous to coal-fired flue gas

- Solvent Loss
 - Emissions
 - Degradation and Heat Stable Salts
- Corrosion
- Multi-component Liquid Analyzer (MLA)
- EPRI
 Independent Verification Protocol

TCM Amine Plant Process Overview

CHP – Natural Gas

CO₂ Concentration: ~3.5-4.0%

- Solvent Performance Comparison
 - TCM (w/o antifoam) 4.0 MJ/kg^{*}
 - 87.0% Capture @ 3.5% CO₂
 - TCM (w/ antifoam) 3.6 MJ/kg^{*}
 - 87.4% Capture @ 3.5% CO₂
 - ION (w/o antifoam) 3.37 MJ/kg
 - 90.0% Capture @ 4.1% CO₂
- No foaming issues
- Very low emissions

CHP + Recycle: Surrogate Clean Coal-fired Flue Gas CO₂ Concentration: Ramping from ~4-13% - NON-OPTIMIZED

- CHP testing a prerequisite for switching to RFCC flue gas
- CO₂ ramping of CO₂ testing performed with 18m of packing
- Series of tests performed after installation of additional cooling capacity at TCM

CO ₂ (%)	SRD (BTU/Ib CO ₂)	SRD (MJ/kg CO ₂)	Capture Efficiency (%)
4.1%	1530	3.56	84.0%
5.9%	1470	3.42	89.8%
8.1%	1535	3.57	87.5%
10.0%	1599	3.72	91.9%
12.5%	1556	3.62	89.7%

RFCC Results – Minimum SRD vs L/G and P_{str} *CO*₂ *Concentration: 12.5%*

- Capture Efficiency 90%
- Increase of P_{str} lowers SRD_{min}
- SRD is 3.25 MJ/kgCO₂ (1,397 BTU/lbCO₂)

Efficiency ION

RFCC Results – Optimum CO₂ Capture Efficiency *CO₂ Concentration: 12.5%*

- Hockey stick plot with aged solvent
- SRD = f (SST) with constant L/G and P_{str}, whilst plotted vs CE
- Using SRD as an indication on best capture efficiency, the low point is 80-85%

EPRI Independent Verification Protocol

- 1 week on-site at the end of the RFCC campaign
- Independent verification of all analytical equipment, process schemes, and calculations
- EPRI currently analyzing data

- List of KPIs
 - CO₂ in flue gas
 - L/G
 - Specific Reboiler Duty
 - Specific Cooling Duty
 - Specific Electrical Duty
 - CO₂ Capture Efficiency
 - CO₂ Product Purity
 - Solvent consumption
 - Emissions

CHP and RFCC Results: HSS

- HSS have developed from NO_x and SO_x from the flue gas and through oxidation from solvent
- NO_x HSS is much higher in RFCC than CHP as expected
- Oxidation seems more prominent in CHP conditions (higher O₂ concentration in flue gas) than RFCC

ProTreat[®] Process Model Comparison to TCM Data Parity Plots and Temperature Profile

-TCM

---ProTreat

Multi-component Liquid Analyzer (MLA)

- In-line, near real-time analysis of solvent composition & CO₂ loading
- Key Benefits:
 - Provides instant feedback to process changes including water, CO₂, and solvent concentrations
 - Replaces the need for off-line analysis of solvent composition
 - Further development could produce feedback loop for automatic and dynamic process control
- Poster at DOE/NETL review meeting '17

Further Conclusions

- ION's advanced solvent successfully demonstrated utilizing both RFCC and CHP flue gas (containing 3.5% to 14.5% CO₂) capturing 14,000 tCO₂ with more than 98% purity
- In comparison to MEA, ION demonstrated lower emission levels on CHP flue gas
- MEA benchmark for CO₂ capture from RFCC gas is currently carried out by TCM
- OPEX
 - Energy: 3.2 3.5 MJ/kgCO₂ capturing 85-92% CO₂
 - ProTreat[®] process model validated with even further improved performance confirming ION's 2.5 MJ/kgCO₂
 - Chemical consumption is below MEA benchmark
 - Reclaiming with 'standard' equipment at TCM is possible

• CAPEX

- Column height -50% compared to MEA
- Corrosion is negligible for stainless steel

23

ION Technology

- Solvent Based Technology
- Reduced CAPEX
 - Smaller Columns, HXs and Footprint
- Reduced OPEX
 - Lower Energy Requirements
 - Less Maintenance
 - Lower emissions
- Lower Parasitic Load
- Scalability
 - Established Engineering Process
- Basis of Performance
 - < 1,090 Btu/lbCO₂ captured (2.5 MJ/kg)
 - Fast kinetics (on par or faster than MEA)
 - Working capacity (higher than MEA)
 - Low heat capacity (much lower than MEA)
 - Low tendency for corrosion (much lower than MEA)

Acknowledgement and Disclaimer

Acknowledgement

This material is based upon work supported by the Department of Energy National Energy Technology Laboratory under cooperative award number DE-FE0013303.

Disclaimer

"This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."

ION Team:

Tyler Silverman, Andrew Awtry, Greg Staab, Erik Meuleman, Buz Brown, Chuck Panaccione, Jenn Atcheson, Rene Kupfer, Reid Brown, Sandra Heldal, Kelly Sias

TCM Team

Department of Energy:

Steve Mascaro, Lynn Brickett, Elaine Everitt, Bethan Young, Brittley Robbins

Thanks to our partners:

TECHNOLOGY CENTRE MONGSTAD

THE UNIVERSITY OF

Nebraska Public Power District

Always there when you